Differential encoding mechanisms for subsequent associative recognition and free recall.
نویسندگان
چکیده
Recent neuroimaging studies have successfully identified encoding mechanisms that support different forms of subsequent episodic recognition memory. In our everyday lives, however, much of our episodic memory retrieval is accomplished by means of free recall, i.e., retrieval without an external recognition cue. In this study, we used functional magnetic resonance imaging to investigate the encoding mechanisms that support later free recall and their relationship to those that support different forms of later recognition memory. First, in agreement with previous work, we found that activation in the left inferior frontal gyrus and hippocampus correlated with later associative/relational recognition. In these regions, activation was further enhanced for items later freely recalled, pointing to shared underlying relational encoding mechanisms whose magnitude of activation differentiates later successful free recall from successful associative recognition. Critically, we also found evidence for free recall-specific encoding mechanisms that did not, in our paradigm, support later associative recognition compared with item recognition. These free recall-specific effects were observed in left mid/dorsolateral prefrontal (DLPFC) and bilateral posterior parietal cortices (PPC). We speculate that the higher-level working memory operations associated with DLPFC and attention to internal mnemonic representations perhaps mediated via PPC may serve to embed an item into a rich associative network during encoding that facilitates later access to the item. Finally, activation in the perirhinal cortex correlated with successful associative binding regardless of the form of later memory, i.e., recognition or free recall, providing novel evidence for the role of the perirhinal cortex in episodic intra-item encoding.
منابع مشابه
The role of the thalamic nuclei in recognition memory accompanied by recall during encoding and retrieval: An fMRI study
The present functional imaging study aimed at investigating the contribution of the mediodorsal nucleus and the anterior nuclei of the thalamus with their related cortical networks to recognition memory and recall. Eighteen subjects performed associative picture encoding followed by a single item recognition test during the functional magnetic resonance imaging session. After scanning, subjects...
متن کاملSeparable prefrontal cortex contributions to free recall.
In everyday life, we often must remember the past in the absence of helpful cues in the environment. In these cases, the brain directs retrieval by relying on internally maintained cues and strategies. Free recall is a widely used behavioral paradigm for studying retrieval with minimal cue support. During free recall, individuals often recall semantically related items consecutively--an effect ...
متن کاملPrestimulus theta in the human hippocampus predicts subsequent recognition but not recall.
Human theta (4-8 Hz) activity in the medial temporal lobe correlates with memory formation; however, the precise role that theta plays in the memory system remains elusive (Hanslmayr and Staudigl, ). Recently, prestimulus theta activity has been associated with successful memory formation, although its specific cognitive role remains unknown (e.g., Fell et al., 2011). In this report, we demonst...
متن کاملMood Dependent Memory for Self-generated Words Using a Musical Mood Induction Procedure
The present study investigated Mood Dependent Memory for selfgenerated words using a Musical mood induction procedure. 75 participants (25 males, 50 females) took part in this study. Testing took place over two sessions, two days apart. During the first session participants were induced into a positive or negative mood before generating a list of 16 words in a word-association task. Two days la...
متن کاملFree recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function.
Free recall and recognition are simulated in a network model of the hippocampal formation, incorporating simplified simulations of neurons, synaptic connections, and the effects of acetylcholine. Simulations focus on modeling the effects of the acetylcholine receptor blocker scopolamine on human memory. Systemic administration of scopolamine is modeled by blockade of the cellular effects of ace...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 36 شماره
صفحات -
تاریخ انتشار 2006